论文标题
在Lorentzian环境中翻译孤子,淹没和同步
Translating Solitons in a Lorentzian Setting, Submersions and Cohomogeneity One Actions
论文作者
论文摘要
我们研究了翻译平均曲率流的孤子的新示例,尤其是在Minkowski空间中。为此,我们考虑将淹没和共同性的一项措施通过适当的开放子集进行的一项行动。这种一般环境还涵盖了经典的欧几里得例子。作为一个应用程序,我们完全对Minkowski Space中的旋转和提升进行旋转和提升来分类,不变的孤子。
We study new examples of translating solitons of the mean curvature flow, especially in Minkowski space. We consider for this purpose manifolds admitting submersions and cohomegeneity one actions by isometries on suitable open subsets. This general setting also covers the classical Euclidean examples. As an application, we completely classify timelike, invariant translating solitons by rotations and boosts in Minkowski space.