论文标题
Centrack:使用商品WiFi迈向厘米级的被动姿势跟踪
CentiTrack: Towards Centimeter-Level Passive Gesture Tracking with Commodity WiFi
论文作者
论文摘要
手势意识在促进人类计算机界面中起着至关重要的作用。先前的工作要么取决于定制的硬件,要么需要先验学习无线信号模式,这在隐私问题,可用性和可靠性方面面临不利影响。在本文中,我们提出了Centrack,这是第一个厘米级的被动式手势跟踪系统,该系统仅与三个CossingityWifi设备一起使用,而没有任何额外的硬件修改或可穿戴的传感器。为此,我们首先在物理层过程中识别通道状态信息(CSI)测量误差源,然后根据相邻天线之间的复杂比率来确定CSI。进一步采用主成分分析(PCA),以将反射信号与噪音分开。进行基准测试实验以验证denoed CSI的相变量与反射的动态路径的长度变化成正比。此外,我们采用多个信号分类(音乐)算法来估计动态路径的边缘角(AOA),然后以三角剖分定位手的初始位置。我们还提出了一种新型的静态组分消除算法,用于通过消除与运动无关的组件来跟踪校正。在各种实际情况下,全面实现和评估了Centrack的原型。广泛的实验表明,与最先进的工厂相比,Centrack在跟踪准确性,传感范围和设备成本方面表现优越。
Gesture awareness plays a crucial role in promoting human-computer interface. Previous works either depend on customized hardware or need a priori learning of wireless signal patterns, facing downsides in terms of the privacy concern, availability and reliability. In this paper, we propose CentiTrack, the first centimeter-level passive gesture tracking system that works with only three commodityWiFi devices, without any extra hardware modifications or wearable sensors. To this end, we first identify the Channel State Information (CSI) measurement error sources in the physical layer process, and then denoise CSI by the complex ratio between adjacent antennas. Principal Component Analysis (PCA) is further adopted to separate the reflected signals from noises. Benchmark experiments are conducted to verify that the phase changes of denoised CSI are proportional to the length changes of dynamic path reflected off the hand. In addition, we adopt the Multiple Signal Classification (MUSIC) algorithm to estimate the Angle-of-Arrivals (AoAs) of dynamic paths, and then locate the initial position of hands with triangulation. We also propose a novel static componnets elimination algorithm for tracking correction by eliminating the components unrelated to motion. A prototype of CentiTrack is fully realized and evaluated in various real scenarios. Extensive experiments show that CentiTrack is superior in terms of tracking accuracy, sensing range and device cost, compared with the state-of-the-arts.