论文标题

椭圆台球中自我交织的N周期不变的不变性

Invariants of Self-Intersected N-Periodics in the Elliptic Billiard

论文作者

Garcia, Ronaldo, Reznik, Dan

论文摘要

我们研究了椭圆台球中的自我交织的n周期,描述了有关它们的几何形状的新事实(例如,自我交织的4个周期学具有与焦点相关的顶点)。我们还检查了一些在“椭圆台球中N-周期的新不变的新不变的”(2020年)中列出的(2020),Arxiv:2004.12497,在自我相互作用的情况下仍然不变。为此,我们为许多低N的简单和自我交织的情况提供了明确的表达。我们确定了两个特殊情况(一种简单的情况,一个自我交织),其中规定不变的数量实际上是可变的。

We study self-intersected N-periodics in the elliptic billiard, describing new facts about their geometry (e.g., self-intersected 4-periodics have vertices concyclic with the foci). We also check if some invariants listed in "Eighty New Invariants of N-Periodics in the Elliptic Billiard" (2020), arXiv:2004.12497, remain invariant in the self-intersected case. Toward that end, we derive explicit expressions for many low-N simple and self-intersected cases. We identify two special cases (one simple, one self-intersected) where a quantity prescribed to be invariant is actually variable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源