论文标题
事件各向同性作为事件形状可观察到的功效
The Efficacy of Event Isotropy as an Event Shape Observable
论文作者
论文摘要
事件各向异性$ \ MATHCAL {i}^\ text {sph} $,可观察到的事件形状,可观察到最终状态与球形对称状态的距离,是针对远非QCD的新物理信号而设计的。我们使用一种新技术生成各种信号,范围从近场到码头,我们将各向同性的事件与其他可观察物进行比较。我们表明,推力$ t $和$ c $ parameter(和$λ_\ text {max} $,Sphericity矩阵的最大特征值)密切相关,因此是冗余的,与良好的近似值相关。相比之下,事件各向同性添加了大量信息,通常可以打破几乎相同的$ t $和$ c $分布之间的信号之间的脱落。具有$ t $(或$λ_\ text {max} $)和$ \ Mathcal {i}^\ text {sph} $的信号通常具有较窄的分布,并且更容易区分,在$({\ Mathcal {\ Mathcal {i}^\ text^\ sph {sph}},$ text $)中。直观的半分析估计技术阐明了为什么是这种情况,并有助于解释分布。
Event isotropy $\mathcal{I}^\text{sph}$, an event shape observable that measures the distance of a final state from a spherically symmetric state, is designed for new physics signals that are far from QCD-like. Using a new technique for producing a wide variety of signals that can range from near-spherical to jetty, we compare event isotropy to other observables. We show that thrust $T$ and the $C$ parameter (and $λ_\text{max}$, the largest eigenvalue of the sphericity matrix) are strongly correlated and thus redundant, to a good approximation. By contrast, event isotropy adds considerable information, often serving to break degeneracies between signals that would have almost identical $T$ and $C$ distributions. Signals with broad distributions in $T$ (or $λ_\text{max}$) and in $\mathcal{I}^\text{sph}$ separately often have much narrower distributions, and are more easily distinguished, in the $({\mathcal{I}^\text{sph}},λ_\text{max})$ plane. An intuitive, semi-analytic estimation technique clarifies why this is the case and assists with the interpretation of the distributions.