论文标题
适应性策略在渐近量子通道歧视中的有用性
Usefulness of adaptive strategies in asymptotic quantum channel discrimination
论文作者
论文摘要
适应性是信息处理的关键原则,包括统计和机器学习。我们研究了自适应方法在渐近二进制假设检验框架中的有用性,当每个假设代表量子通道的许多独立实例,并且测试基于使用未知通道和观察输出的测试。与量子状态的熟悉环境不同,相对于渠道用途,适应性和非自适应策略之间存在一个基本的区别,我们通过对测试策略施加不同的限制来引入歧视任务的许多进一步的歧视任务。获得以下结果:(1)我们证明,对于经典的量词通道,自适应和非自适应策略,都会导致对称(Chernoff)和非对称(Hoeffding,Stein)设置中的相同误差指数。 (2)量子通道的自适应和非自适应对称假设测试指数之间的第一个分离,我们源自非自适应策略的误差概率的一般下限;我们分析的具体示例是一对纠缠的通道。 (3)在某种意义上,我们证明了先前的陈述,对于一般渠道而言,限制在经典的进料和产品状态渠道输入的自适应策略在渐近限制中并不优于非自适应产品状态策略。 (4)作为我们发现的应用,我们解决了任意量子通道的歧视能力,并表明具有经典反馈的自适应策略,并且在输入处没有量子记忆,不会增加通道的歧视能力,而不是非自适应张量张量产品输入策略。
Adaptiveness is a key principle in information processing including statistics and machine learning. We investigate the usefulness of adaptive methods in the framework of asymptotic binary hypothesis testing, when each hypothesis represents asymptotically many independent instances of a quantum channel, and the tests are based on using the unknown channel and observing outputs. Unlike the familiar setting of quantum states as hypotheses, there is a fundamental distinction between adaptive and non-adaptive strategies with respect to the channel uses, and we introduce a number of further variants of the discrimination tasks by imposing different restrictions on the test strategies. The following results are obtained: (1) We prove that for classical-quantum channels, adaptive and non-adaptive strategies lead to the same error exponents both in the symmetric (Chernoff) and asymmetric (Hoeffding, Stein) settings. (2) The first separation between adaptive and non-adaptive symmetric hypothesis testing exponents for quantum channels, which we derive from a general lower bound on the error probability for non-adaptive strategies; the concrete example we analyze is a pair of entanglement-breaking channels. (3)We prove, in some sense generalizing the previous statement, that for general channels adaptive strategies restricted to classical feed-forward and product state channel inputs are not superior in the asymptotic limit to non-adaptive product state strategies. (4) As an application of our findings, we address the discrimination power of an arbitrary quantum channel and show that adaptive strategies with classical feedback and no quantum memory at the input do not increase the discrimination power of the channel beyond non-adaptive tensor product input strategies.