论文标题
$ \ mathbb {z} _n $ lattice量规理论在梯子几何形状中
$\mathbb{Z}_N$ lattice gauge theory in a ladder geometry
论文作者
论文摘要
在实现晶格规定的模拟量子模拟的角度来看,梯形几何形状提供了一个有趣的操场,与超低原子实验有关。在这里,我们研究了在两腿梯子中定义的汉密尔顿格子晶格量表。我们考虑了一个模型,其中包括量规玻色子和希格斯与本地$ \ mathbb {z} _n $ gauge sommetries的自由度。我们根据有效的低能场理论和密度矩阵重新归一化组模拟研究其相图。对于$ n \ ge 5 $,出现了扩展的无间隙库仑相位,该相位由berezinskii-kosterlitz隔开,从周围的间隙阶段与无与伦比的相位过渡。除了传统的受限和希格斯政权外,我们还观察到一个新型的四极区域,该区域源自梯子几何形状。
Under the perspective of realizing analog quantum simulations of lattice gauge theories, ladder geometries offer an intriguing playground, relevant for ultracold atom experiments. Here, we investigate Hamiltonian lattice gauge theories defined in two-leg ladders. We consider a model that includes both gauge boson and Higgs matter degrees of freedom with local $\mathbb{Z}_N$ gauge symmetries. We study its phase diagram based on both an effective low-energy field theory and density matrix renormalization group simulations. For $N\ge 5$, an extended gapless Coulomb phase emerges, which is separated by a Berezinskii-Kosterlitz-Thouless phase transition from the surrounding gapped phase. Besides the traditional confined and Higgs regimes, we also observe a novel quadrupolar region, originated by the ladder geometry.