论文标题

派副作用链中的动力拓扑激发

Dynamical topological excitations in parafermion chains

论文作者

Kaskela, Vilja, Lado, J. L.

论文摘要

多体系统中的拓扑激发是现代冷凝物理物理学的范式基石之一。特别是,副标是在分数量子霍尔 - 渗透器连接处可能出现的难以捉摸的分数激发,这代表了分数量子问题的主要里程碑之一。在这里,通过使用张量网络和核多项式技术的组合,我们证明了在多体派层型链链中零模式和有限能量激励的出现。我们在拓扑偏执链边缘的多体光谱函数中显示了零能量模式的外观,它们与系统的拓扑变性的关系,我们将它们的物理学与拓扑超导体的主要结合状态进行了比较。我们证明了派助力拓扑模式相对于各种扰动的鲁棒性,并且我们展示了偏离耦合的副膜链导致缝隙激发的较弱。我们的结果例证了张量网络方法的多功能性,用于研究相互作用的派层链的动态激发,并突出了parafermion模型中拓扑模式的鲁棒性。

Topological excitations in many-body systems are one of the paradigmatic cornerstones of modern condensed matter physics. In particular, parafermions are elusive fractional excitations potentially emerging in fractional quantum Hall-superconductor junctions, and represent one of the major milestones in fractional quantum matter. Here, by using a combination of tensor network and kernel polynomial techniques, we demonstrate the emergence of zero modes and finite energy excitations in many-body parafermion chains. We show the appearance of zero energy modes in the many-body spectral function at the edge of a topological parafermion chain, their relation with the topological degeneracy of the system, and we compare their physics with the Majorana bound states of topological superconductors. We demonstrate the robustness of parafermion topological modes with respect to a variety of perturbations, and we show how weakly coupled parafermion chains give rise to in-gap excitations. Our results exemplify the versatility of tensor network methods for studying dynamical excitations of interacting parafermion chains, and highlight the robustness of topological modes in parafermion models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源