论文标题

在恒定曲率表面上动力学布朗运动的光谱渐近学

Spectral Asymptotics for Kinetic Brownian Motion on Surfaces of Constant Curvature

论文作者

Kolb, Martin, Weich, Tobias, Wolf, Lasse Lennart

论文摘要

Riemannian歧管$ M $的球体束上的动力学布朗运动是一个随机过程,它可以随机地扰动地球流动。如果$ m $是一种可以定位的紧凑型表面,我们表明,在无限大的扰动的极限中,该过程的无限发电机的$ l^2 $ - 光谱会收敛到基础歧管的拉普拉斯光谱。

The kinetic Brownian motion on the sphere bundle of a Riemannian manifold $M$ is a stochastic process that models a random perturbation of the geodesic flow. If $M$ is a orientable compact constantly curved surface, we show that in the limit of infinitely large perturbation the $L^2$-spectrum of the infinitesimal generator of a time rescaled version of the process converges to the Laplace spectrum of the base manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源