论文标题

i-post:智能销售和交易系统

I-POST: Intelligent Point of Sale and Transaction System

论文作者

Khan, Farid

论文摘要

我们为收银员问题提出了一种新颖的解决方案。当前的收银机系统/销售点(POS)终端对用户来说可能是效率低下,繁琐且耗时的。需要取决于现代技术和无处不在的计算资源的解决方案。我们将I-POST(智能销售和交易点)作为软件系统,使用智能设备,手机和最先进的机器学习算法来以自动和实时方式处理用户交易。 I-Post是一种自动结帐系统,允许用户在商店中行走,收集他的物品并退出商店。没有必要站在队列中等待。该系统使用对象检测和面部识别算法来处理客户端和对象状态的身份验证。在退出点,分类器将数据发送到执行付款的后端服务器。该系统使用卷积神经网络(CNN)进行图像识别和处理。 CNN是一种监督的学习模型,在模式识别问题中发现了主要的应用。当前实现使用两个分类器,这些分类器本质上可以验证用户并跟踪项目。对象识别的模型精度为97%,损失为9.3%。我们希望这样的系统可以为市场带来效率,并有可能进行广泛而多样化的应用。

We propose a novel solution for the cashier problem. Current cashier system/Point of Sale (POS) terminals can be inefficient, cumbersome and time-consuming for the users. There is a need for a solution dependent on modern technology and ubiquitous computing resources. We present I-POST (Intelligent Point of Sale and Transaction) as a software system that uses smart devices, mobile phone and state of the art machine learning algorithms to process the user transactions in automated and real time manner. I-POST is an automated checkout system that allows the user to walk in a store, collect his items and exit the store. There is no need to stand and wait in a queue. The system uses object detection and facial recognition algorithm to process the authentication of the client and the state of the object. At point of exit, the classifier sends the data to the backend server which execute the payments. The system uses Convolution Neural Network (CNN) for the image recognition and processing. CNN is a supervised learning model that has found major application in pattern recognition problem. The current implementation uses two classifiers that work intrinsically to authenticate the user and track the items. The model accuracy for object recognition is 97%, the loss is 9.3%. We expect that such systems can bring efficiency to the market and has the potential for broad and diverse applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源