论文标题

(S)PDE的代数变形

Algebraic deformation for (S)PDEs

论文作者

Bruned, Yvain, Manchon, Dominique

论文摘要

我们基于前LIE产品的变形引入了一个新的代数框架。这使我们能够在ARXIV:1610.08468和ARXIV:2005.01649中使用规律性结构中的代数对象的新结构,用于在低规律性下得出分散PDES的一般方案。该结构还解释了Arxiv中的代数结构:1610.08468如何看作是屠夫 - 康涅斯肯尼尔群岛和提取 - 诱使Hopf代数的变形。我们首先通过Taylor变形将各种前LIE产品变形,然后应用Guin-Oudom程序,该程序为我们提供了一种关联产品,可以将其与已知的共同体进行比较。这项工作表明,在(S)PDES研究中,前LIE产品及其变形可能是一个核心对象。

We introduce a new algebraic framework based on the deformation of pre-Lie products. This allows us to provide a new construction of the algebraic objects at play in Regularity Structures in the work arXiv:1610.08468 and in arXiv:2005.01649 for deriving a general scheme for dispersive PDEs at low regularity. This construction also explains how the algebraic structure in arXiv:1610.08468 can be viewed as a deformation of the Butcher-Connes-Kreimer and the extraction-contraction Hopf algebras. We start by deforming various pre-Lie products via a Taylor deformation and then we apply the Guin-Oudom procedure which gives us an associative product whose adjoint can be compared with known coproducts. This work reveals that pre-Lie products and their deformation can be a central object in the study of (S)PDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源