论文标题
$ k- $平滑度在多面体巴拉克空间
$k-$smoothness on polyhedral Banach spaces
论文作者
论文摘要
我们表征了有限多数的多面体Banach空间的单位球体上元素的$ k- $平滑度。然后,我们研究运算符$ t \ in \ mathbb {l}(\ ell _ {\ eld _ {\ infty}^n,\ mathbb {y})的$ k- $平滑度美元
We characterize $k-$smoothness of an element on the unit sphere of a finite-dimensional polyhedral Banach space. Then we study $k-$smoothness of an operator $T \in \mathbb{L}(\ell_{\infty}^n,\mathbb{Y}),$ where $\mathbb{Y}$ is a two-dimensional Banach space with the additional condition that $T$ attains norm at each extreme point of $B_{\ell_{\infty}^{n}}.$ We also characterize $k-$smoothness of an operator defined between $\ell_{\infty}^3$ and $\ell_{1}^3.$