论文标题

通过小组级纵向数据进行政策评估的试验仿真方法

A trial emulation approach for policy evaluations with group-level longitudinal data

论文作者

Ben-Michael, Eli, Feller, Avi, Stuart, Elizabeth A.

论文摘要

为了限制新型冠状病毒的传播,世界各地的政府实施了非凡的物理距离政策,例如在家命令,旨在估算其影响。许多统计和计量经济学方法,例如差异差异,利用重复的测量和计时变化来估计政策效应,包括在COVID-19的情况下。尽管这些方法在流行病学中不太常见,但流行病学研究人员习惯于在个人水平干预措施的研究中处理类似的复杂性。 “目标试验仿真”强调需要在包含和排除标准,协变量,暴露定义和结果测量以及这些变量的时机方面仔细设计非实验性研究。我们认为,使用小组级纵向(“面板”)数据进行的政策评估需要采取类似的仔细研究设计设计,我们称之为“政策试验仿真”。当干预时机在各个司法管辖区变化时,这一点尤其重要。主要思想是为每个“治疗队列”(同时执行政策的情况)分别构建目标试验,然后进行汇总。我们介绍了对国家一级居住订单对冠状病毒总案件的影响的程式化分析。我们认为,通过正确的数据以及仔细的建模和诊断方法,来自面板方法的估计可以帮助我们增加对许多政策的理解,尽管这样做通常很具有挑战性。

To limit the spread of the novel coronavirus, governments across the world implemented extraordinary physical distancing policies, such as stay-at-home orders, and numerous studies aim to estimate their effects. Many statistical and econometric methods, such as difference-in-differences, leverage repeated measurements and variation in timing to estimate policy effects, including in the COVID-19 context. While these methods are less common in epidemiology, epidemiologic researchers are well accustomed to handling similar complexities in studies of individual-level interventions. "Target trial emulation" emphasizes the need to carefully design a non-experimental study in terms of inclusion and exclusion criteria, covariates, exposure definition, and outcome measurement -- and the timing of those variables. We argue that policy evaluations using group-level longitudinal ("panel") data need to take a similar careful approach to study design, which we refer to as "policy trial emulation." This is especially important when intervention timing varies across jurisdictions; the main idea is to construct target trials separately for each "treatment cohort" (states that implement the policy at the same time) and then aggregate. We present a stylized analysis of the impact of state-level stay-at-home orders on total coronavirus cases. We argue that estimates from panel methods -- with the right data and careful modeling and diagnostics -- can help add to our understanding of many policies, though doing so is often challenging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源