论文标题

具有依赖性语法和神经模型的多语言讽刺检测

Multilingual Irony Detection with Dependency Syntax and Neural Models

论文作者

Cignarella, Alessandra Teresa, Basile, Valerio, Sanguinetti, Manuela, Bosco, Cristina, Rosso, Paolo, Benamara, Farah

论文摘要

本文对基于依赖性的句法特征对讽刺检测任务的有效性进行了深入研究(英语,西班牙语,法语和意大利语)。它着重于句法知识的贡献,并利用语言资源,其中句法根据普遍的依赖方案注释。提供了三个不同的实验设置。首先,探索了各种基于句法的依赖性特征与经典的机器学习分类器相结合的。在第二种情况下,对分析数据进行了两种众所周知的单词嵌入类型,并针对黄金标准数据集进行了测试。在第三个设置中,将基于依赖关系的句法特征合并到多语言BERT体系结构中。结果表明,基于细粒的基于依赖性的句法信息对于检测具有讽刺意味的是信息。

This paper presents an in-depth investigation of the effectiveness of dependency-based syntactic features on the irony detection task in a multilingual perspective (English, Spanish, French and Italian). It focuses on the contribution from syntactic knowledge, exploiting linguistic resources where syntax is annotated according to the Universal Dependencies scheme. Three distinct experimental settings are provided. In the first, a variety of syntactic dependency-based features combined with classical machine learning classifiers are explored. In the second scenario, two well-known types of word embeddings are trained on parsed data and tested against gold standard datasets. In the third setting, dependency-based syntactic features are combined into the Multilingual BERT architecture. The results suggest that fine-grained dependency-based syntactic information is informative for the detection of irony.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源