论文标题
富含医学知识的文字索引框架
Medical Knowledge-enriched Textual Entailment Framework
论文作者
论文摘要
实现强大的医学问答系统的基本任务之一是文本含义。现有的方法利用了预训练的语言模型或数据增强的集合,通常是在验证指标上计时更高的数字。但是,两个主要的缺点阻碍了更高的成功识别需要:(1)了解问题的重点/意图,以及(2)利用现实世界背景知识以捕获句子以外的上下文的能力。在本文中,我们提出了一个新颖的医学知识增强的文本核心框架,该框架允许该模型借助相关领域特定的知识图获取输入医学文本的语义和全局表示。我们在基准MEDIQA-RQE数据集上评估了我们的框架,并表明使用丰富的双重编码机制有助于实现SOTA语言模型的绝对提高8.27%。我们在此处提供了源代码。
One of the cardinal tasks in achieving robust medical question answering systems is textual entailment. The existing approaches make use of an ensemble of pre-trained language models or data augmentation, often to clock higher numbers on the validation metrics. However, two major shortcomings impede higher success in identifying entailment: (1) understanding the focus/intent of the question and (2) ability to utilize the real-world background knowledge to capture the context beyond the sentence. In this paper, we present a novel Medical Knowledge-Enriched Textual Entailment framework that allows the model to acquire a semantic and global representation of the input medical text with the help of a relevant domain-specific knowledge graph. We evaluate our framework on the benchmark MEDIQA-RQE dataset and manifest that the use of knowledge enriched dual-encoding mechanism help in achieving an absolute improvement of 8.27% over SOTA language models. We have made the source code available here.