论文标题
通过自举的自我监督图表示学习
Self-supervised Graph Representation Learning via Bootstrapping
论文作者
论文摘要
图形神经网络〜(GNNS)将深度学习技术应用于图形结构的数据,并在图表示学习中实现了有希望的性能。但是,现有的GNN严重依赖足够的标签或精心设计的负样本。为了解决这些问题,我们提出了一种新的自我监督图表示方法:深图引导〜(DGB)。 DGB由两个神经网络组成:在线和目标网络,它们的输入是初始图的不同增强视图。在线网络通过在线网络的缓慢移动平均值进行更新时,对在线网络进行了培训,以预测目标网络,这意味着在线和目标网络可以互相学习。结果,提出的DGB可以以无监督的方式学习图表表示,而无需负面示例。此外,我们总结了三种用于图形结构化数据的增强方法,并将其应用于DGB。基准数据集上的实验表明,DGB的性能优于当前最新方法,以及增强方法如何影响性能。
Graph neural networks~(GNNs) apply deep learning techniques to graph-structured data and have achieved promising performance in graph representation learning. However, existing GNNs rely heavily on enough labels or well-designed negative samples. To address these issues, we propose a new self-supervised graph representation method: deep graph bootstrapping~(DGB). DGB consists of two neural networks: online and target networks, and the input of them are different augmented views of the initial graph. The online network is trained to predict the target network while the target network is updated with a slow-moving average of the online network, which means the online and target networks can learn from each other. As a result, the proposed DGB can learn graph representation without negative examples in an unsupervised manner. In addition, we summarize three kinds of augmentation methods for graph-structured data and apply them to the DGB. Experiments on the benchmark datasets show the DGB performs better than the current state-of-the-art methods and how the augmentation methods affect the performances.