论文标题

使用加固学习进行快速运动计划的缝合针的双层重新编写

Bimanual Regrasping for Suture Needles using Reinforcement Learning for Rapid Motion Planning

论文作者

Chiu, Zih-Yun, Richter, Florian, Funk, Emily K., Orosco, Ryan K., Yip, Michael C.

论文摘要

重新缝制缝合针是缝合过程中重要但耗时的过程。为了将效率提高到重新升级,先前的工作要么设计特定于任务的机制,要么将抓紧器引导到某个特定的拾取点,以适当握住针头。但是,当工作空间更改时,这些方法通常无法部署。因此,在这项工作中,我们介绍了通过增强学习(RL)进行双层针重新绘制的快速轨迹产生。从基于抽样的运动计划算法进行的演示以加快学习速度。此外,我们为这个双人计划问题提出了以自我为中心的状态和动作空间,其中参考框架在最终效果上而不是某些固定帧。因此,学习的策略可以直接应用于任何可行的机器人配置。我们在模拟中的实验表明,单个通过的成功率为97%,计划时间平均为0.0212,它的表现优于其他广泛使用的运动计划算法。对于现实世界实验,如果针头姿势是从RGB图像重建的,成功率为73.3%,计划时间为0.0846,运行时间为5.1454。如果事先已知针头姿势,成功率将变为90.5%,计划时间为0.0807,运行时间为2.8801。

Regrasping a suture needle is an important yet time-consuming process in suturing. To bring efficiency into regrasping, prior work either designs a task-specific mechanism or guides the gripper toward some specific pick-up point for proper grasping of a needle. Yet, these methods are usually not deployable when the working space is changed. Therefore, in this work, we present rapid trajectory generation for bimanual needle regrasping via reinforcement learning (RL). Demonstrations from a sampling-based motion planning algorithm is incorporated to speed up the learning. In addition, we propose the ego-centric state and action spaces for this bimanual planning problem, where the reference frames are on the end-effectors instead of some fixed frame. Thus, the learned policy can be directly applied to any feasible robot configuration. Our experiments in simulation show that the success rate of a single pass is 97%, and the planning time is 0.0212s on average, which outperforms other widely used motion planning algorithms. For the real-world experiments, the success rate is 73.3% if the needle pose is reconstructed from an RGB image, with a planning time of 0.0846s and a run time of 5.1454s. If the needle pose is known beforehand, the success rate becomes 90.5%, with a planning time of 0.0807s and a run time of 2.8801s.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源