论文标题
使用原子模拟的非单明性连续性理论的核心能量和正则化参数
Core energy and regularization parameters of non-singular continuum theories of dislocations using atomistic simulations
论文作者
论文摘要
脱位芯是一个重要区域,因为它控制着许多重要的材料特性。弹性在核心中分解,压力,力和能量在位错线处分解。我们考虑在离散脱位动力学(DDD)模拟中采用的三种最常见的方法来消除这些奇异性:(1)考虑截止参数,(2)使用梯度弹性扩散汉堡矢量(CAWB理论),以及(3)使用梯度弹性。这些方法中的每一个都包含一个额外的长度参数,以使弹性字段正常。在本文中,我们表明这些正则化参数可以显着影响DDD模拟的结果。我们将原子模拟用于混合位错来找到位错核的半径和能量,并在三种方法中的每种方法中找到正则化参数及其与位错角度的变化。我们还考虑了是否为正则化参数选择任意常数,如何将核心能量添加到仿真代码中。我们得出的结论是,尽管可以通过一个参数描述经典弹性中的核心能量,但其他两种方法需要两个能量参数(边缘的核心和螺钉的核心能量)来描述核心能量与特征角度的变化。我们已经表明,如果不包括核心能量,则不能为CAWB理论选择正规化参数或梯度弹性。
The dislocation core is an important region as it controls many important properties of materials. Elasticity breaks down in the core and the stress, force, and energy diverge at the dislocation line. We consider three commonest methods employed in Discrete Dislocation Dynamics (DDD) simulations to eliminate these singularities: (1) considering a cutoff parameter, (2) spreading the Burgers vector (CAWB theory), and (3) using gradient elasticity. Each of these methods includes an extra length parameter to regularize the elastic fields. In this article, we show that these regularization parameters can significantly influence the results of the DDD simulations. We use atomistic simulations for mixed dislocations to find the radius and energy of the dislocation core and find the regularization parameter and its variations with the dislocation character angle in each of the three methods. We have also considered if an arbitrary constant is chosen for the regularization parameter how the core energy should be added to the simulation codes. We have concluded that while the core energy in classical elasticity with a cutoff parameter can be described by one parameter, the other two methods need two energy parameters (core energy of edge and core energy of screw) for describing the variation of the core energy with the character angle. We have shown that no regularization parameter can be selected for the CAWB theory or gradient elasticity if no core energy is included.