论文标题

产生准确神经网络电位的系统方法:碳的情况

A Systematic Approach to Generating Accurate Neural Network Potentials: the Case of Carbon

论文作者

Shaidu, Yusuf, Kucukbenli, Emine, Lot, Ruggero, Pellegrini, Franco, Kaxiras, Efthimios, de Gironcoli, Stefano

论文摘要

可用性和广泛适用的原子间潜力是解锁现代材料建模的财富所需的关键。基于人工神经网络的产生潜力的方法是有希望的。但是,神经网络训练需要大量数据,从通常未知的势能表面进行了充分的数据。在这里,我们提出了一种基于晶体结构预测形式主义的自洽方法,并以无监督的数据分析为指导,以构建准确,廉价和可转移的人工神经网络潜力。使用这种方法,我们为碳构建了一个原子潜力,并证明了其重现钻石,石墨和石墨烯的弹性和振动特性的第一原理的能力,以及各种晶体和无定形相的能量排序和结构特性。

Availability of affordable and widely applicable interatomic potentials is the key needed to unlock the riches of modern materials modelling. Artificial neural network based approaches for generating potentials are promising; however neural network training requires large amounts of data, sampled adequately from an often unknown potential energy surface. Here we propose a self-consistent approach that is based on crystal structure prediction formalism and is guided by unsupervised data analysis, to construct an accurate, inexpensive and transferable artificial neural network potential. Using this approach, we construct an interatomic potential for Carbon and demonstrate its ability to reproduce first principles results on elastic and vibrational properties for diamond, graphite and graphene, as well as energy ordering and structural properties of a wide range of crystalline and amorphous phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源