论文标题

非等级神经法规和闭合障碍的障碍

Nondegenerate Neural Codes and Obstructions to Closed-Convexity

论文作者

Chan, Patrick, Johnston, Katherine, Lent, Joseph, de Perez, Alexander Ruys, Shiu, Anne

论文摘要

关于神经代码凸的先前工作已经产生了开放式登录的代码,而不是闭合征,反之亦然。但是,为什么代码是一个而不是另一个,以及如何检测到这种差异是开放的问题。我们通过两种方式解决这些问题。首先,我们研究了Cruz等人引入的堕落概念,并扩展了结果,以表明非高级质量精确地捕获了封闭或开放或封闭实现的内部时的情况,从而可以另一种实现代码的实现。其次,我们给出了第一个一般标准,即排除代码是封闭键的(不排除开放式登记性),从而在先前的工作中统一了临时几何论证。一个标准是建立在我们称为刚性结构的现象上的,而另一个可以根据代码的神经理想来表示代数。这些结果补充了具有相反目的的现有标准:排除开放式识别性,但不排除闭合气体。最后,我们表明,杰夫斯所显示的代码家族实际上是封闭键,在尺寸二中可以实现。

Previous work on convexity of neural codes has produced codes that are open-convex but not closed-convex -- or vice-versa. However, why a code is one but not the other, and how to detect such discrepancies are open questions. We tackle these questions in two ways. First, we investigate the concept of degeneracy introduced by Cruz et al., and extend their results to show that nondegeneracy precisely captures the situation when taking closures or interiors of open or closed realizations, respectively, yields another realization of the code. Second, we give the first general criteria for precluding a code from being closed-convex (without ruling out open-convexity), unifying ad-hoc geometric arguments in prior works. One criterion is built on a phenomenon we call a rigid structure, while the other can be stated algebraically, in terms of the neural ideal of the code. These results complement existing criteria having the opposite purpose: precluding open-convexity but not closed-convexity. Finally, we show that a family of codes shown by Jeffs to be not open-convex is in fact closed-convex and realizable in dimension two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源