论文标题

晦涩的量子和会员资格振幅

Obscure qubits and membership amplitudes

论文作者

Duplij, Steven, Vogl, Raimund

论文摘要

我们提出了一个量子计算的概念,该概念结合了一种额外的不确定性,即模糊性(模糊性),以自然的方式引入新实体,晦涩的Qudits(例如,遮盖的量子)(例如,遮盖的量子),它们以量子概率和成员函数的形式同时表征。为此,引入了量子状态的会员幅度与量子振幅一起引入。天生规则仅用于量子概率,而可以根据所选模型从会员振幅中计算成会员函数。此处给出了这种方法的两种不同版本:“产品”晦涩的量子,其中由此产生的振幅是量子振幅和会员振幅的产物,而“ kronecker”晦涩的量子符号是独立执行的量子和模糊计算(即,量子计算以及真实评估的量子计算)。后者称为双重模糊量子计算。在这种情况下,测量在量子中混合在一起,幅度为晦涩,而密度矩阵则不依赖。晦涩的Quantum门不是在空间的张量产物中作用,而是在量子Hilbert空间的直接产物中,所谓的构件空间具有不同的本质和特性。引入了双重(模糊量子)纠缠的概念,并提出了向量和标量并发,并给出了一些示例。

We propose a concept of quantum computing which incorporates an additional kind of uncertainty, i.e. vagueness (fuzziness), in a natural way by introducing new entities, obscure qudits (e.g. obscure qubits), which are characterized simultaneously by a quantum probability and by a membership function. To achieve this, a membership amplitude for quantum states is introduced alongside the quantum amplitude. The Born rule is used for the quantum probability only, while the membership function can be computed from the membership amplitudes according to a chosen model. Two different versions of this approach are given here: the "product" obscure qubit, where the resulting amplitude is a product of the quantum amplitude and the membership amplitude, and the "Kronecker" obscure qubit, where quantum and vagueness computations are to be performed independently (i.e. quantum computation alongside truth evaluation). The latter is called a double obscure-quantum computation. In this case, the measurement becomes mixed in the quantum and obscure amplitudes, while the density matrix is not idempotent. The obscure-quantum gates act not in the tensor product of spaces, but in the direct product of quantum Hilbert space and so called membership space which are of different natures and properties. The concept of double (obscure-quantum) entanglement is introduced, and vector and scalar concurrences are proposed, with some examples being given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源