论文标题

带有随机延迟的双变量正常逆高斯过程:有效的模拟和对能源市场的应用

A bivariate Normal Inverse Gaussian process with stochastic delay: efficient simulations and applications to energy markets

论文作者

Gardini, Matteo, Sabino, Piergiacomo, Sasso, Emanuela

论文摘要

使用Gardini等人引入的自我分解的下属的概念。 [11],我们构建了一个新的双变量正常逆高斯过程,可以捕获随机延迟。此外,我们还开发了一种新颖的路径仿真方案,该方案依赖于可自我分解的逆高斯定律与莱维驱动的Ornstein-uhlenbeck过程之间的数学联系,并具有逆高斯平稳分布。我们表明,我们的方法可以改进张和张[23]中详述的现有仿真方案,因为它不依赖于接受拒绝方法。最终,这些结果应用于能源市场的建模,并使用拟议的蒙特卡洛方案和傅立叶技术来定价。

Using the concept of self-decomposable subordinators introduced in Gardini et al. [11], we build a new bivariate Normal Inverse Gaussian process that can capture stochastic delays. In addition, we also develop a novel path simulation scheme that relies on the mathematical connection between self-decomposable Inverse Gaussian laws and Lévy-driven Ornstein-Uhlenbeck processes with Inverse Gaussian stationary distribution. We show that our approach provides an improvement to the existing simulation scheme detailed in Zhang and Zhang [23] because it does not rely on an acceptance-rejection method. Eventually, these results are applied to the modelling of energy markets and to the pricing of spread options using the proposed Monte Carlo scheme and Fourier techniques

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源