论文标题
使用平衡的对抗性适应在复杂场景中进行本地化
Localising In Complex Scenes Using Balanced Adversarial Adaptation
论文作者
论文摘要
域的适应性和生成建模通过利用仿真环境中的精确,标记的数据丰富的丰富性来共同减轻数据收集的昂贵性质和标签。在这项工作中,我们研究了针对模拟环境中本地化优化的表示形式和此类表示形式在现实世界中的应用之间存在的性能差距。我们的方法利用了模拟和现实环境之间的共享几何相似性,同时保持对视觉差异的不变性。这是通过优化表示提取器以将模拟和实际表示形式投影到共享表示空间中来实现的。我们的方法使用一种对称对抗方法,该方法鼓励表示提取器掩盖从中提取特征的域,并同时保留对本地化有益的源和目标域之间的强大属性。我们通过调整针对室内栖息地模拟环境(MatterPort3D和副本)进行优化的表示表述来评估我们的方法,以对现实世界中的室内环境(Active Vision DataSet)进行评估,这表明它与完全监督的方法进行了比较。
Domain adaptation and generative modelling have collectively mitigated the expensive nature of data collection and labelling by leveraging the rich abundance of accurate, labelled data in simulation environments. In this work, we study the performance gap that exists between representations optimised for localisation on simulation environments and the application of such representations in a real-world setting. Our method exploits the shared geometric similarities between simulation and real-world environments whilst maintaining invariance towards visual discrepancies. This is achieved by optimising a representation extractor to project both simulated and real representations into a shared representation space. Our method uses a symmetrical adversarial approach which encourages the representation extractor to conceal the domain that features are extracted from and simultaneously preserves robust attributes between source and target domains that are beneficial for localisation. We evaluate our method by adapting representations optimised for indoor Habitat simulated environments (Matterport3D and Replica) to a real-world indoor environment (Active Vision Dataset), showing that it compares favourably against fully-supervised approaches.