论文标题

在盒子中1D Weyl-Majorana粒子的边界条件下

On the boundary conditions for the 1D Weyl-Majorana particle in a box

论文作者

De Vincenzo, Salvatore

论文摘要

在(1+1)时空尺寸中,我们可以同时有两个粒子,即韦尔和主要颗粒颗粒--- 1D Weyl-Majorana颗粒。也就是说,满足Majorana条件的两个分量零dirac波函数的右手和左手,在Weyl代表中描述了这些颗粒,并且每个粒子都满足了自己的主要条件。自然,这两个两个组分波函数的非零分量满足Weyl方程。我们研究并讨论了这个问题,并证明对于盒子中的1D Weyl-Majorana粒子,非零成分,因此手性波的功能仅接受周期和反碘的边界条件。从后两个边界条件来看,我们只能为整个DIRAC波函数构造四个边界条件。然后,我们证明,这四个边界条件也包括在盒子中1D Majorana粒子的最一般的自动化边界条件中。

In (1+1) space-time dimensions, we can have two particles that are Weyl and Majorana particles at the same time---1D Weyl-Majorana particles. That is, the right-chiral and left-chiral parts of the two-component Dirac wave function that satisfies the Majorana condition, in the Weyl representation, describe these particles, and each satisfies their own Majorana condition. Naturally, the nonzero component of each of these two two-component wave functions satisfies a Weyl equation. We investigate and discuss this issue and demonstrate that for a 1D Weyl-Majorana particle in a box, the nonzero components, and therefore the chiral wave functions, only admit the periodic and antiperiodic boundary conditions. From the latter two boundary conditions, we can only construct four boundary conditions for the entire Dirac wave function. Then, we demonstrate that these four boundary conditions are also included within the most general set of self-adjoint boundary conditions for a 1D Majorana particle in a box.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源