论文标题
在不可衡量的潜在输入下,多代理合作的拓扑推断
Topology Inference for Multi-agent Cooperation under Unmeasurable Latent Input
论文作者
论文摘要
拓扑推断是多代理系统中合作控制的关键问题。与大多数先前的作品不同,本文致力于从一个由单个,嘈杂和有限的时间序列系统轨迹组成的观察结果中推断出的网络拓扑,其中最初的网络状态和不可估计的潜在输入刺激了合作动力学。不可衡量的潜在输入是指内在的系统信号和外部环境干扰。考虑到输入的时间不变/变化性质,我们分别提出了基于两层优化的基于两层优化的基于两层优化的拓扑推理算法(TOTIA和IE-TIA)。待办事项使我们能够捕获全球代理状态的可分离性,并消除时间不变输入对系统动力学的未知影响。 IE-TIA进一步利用了更一般的时变输入的可识别性和估计性,并提供了具有所需收敛属性的渐近解决方案,与TOIA相比,计算成本更高。我们的新型算法放宽了观察量表的依赖性,并利用经验风险重新制定,以提高拓扑结构和边缘重量的推理准确性。提供了各种拓扑的全面理论分析和模拟,以说明所提出算法的推理可行性和性能。
Topology inference is a crucial problem for cooperative control in multi-agent systems. Different from most prior works, this paper is dedicated to inferring the directed network topology from the observations that consist of a single, noisy and finite time-series system trajectory, where the cooperation dynamics is stimulated with the initial network state and the unmeasurable latent input. The unmeasurable latent input refers to intrinsic system signal and extrinsic environment interference. Considering the time-invariant/varying nature of the input, we propose two-layer optimization-based and iterative estimation based topology inference algorithms (TO-TIA and IE-TIA), respectively. TO-TIA allows us to capture the separability of global agent state and eliminates the unknown influence of time-invariant input on system dynamics. IE-TIA further exploits the identifiability and estimability of more general time-varying input and provides an asymptotic solution with desired convergence properties, with higher computation cost compared with TO-TIA. Our novel algorithms relax the dependence of observation scale and leverage the empirical risk reformulation to improve the inference accuracy in terms of the topology structure and edge weight. Comprehensive theoretical analysis and simulations for various topologies are provided to illustrate the inference feasibility and the performance of the proposed algorithms.