论文标题
分数Sobolev空间和分数变化的分布方法:渐近学II
A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics II
论文作者
论文摘要
我们继续研究功能的空间$ bv^α(\ mathbb r^n)$,具有$ \ mathbb r^n $的分数变化以及分布分数sobolev space $ s^{α,p}(\ mathbb r^n)$,以前在[1,+p in]中,$ p。 Arxiv:1809.08575和Arxiv:1910.13419。我们首先定义空间$ bv^0(\ mathbb r^n)$,并建立标识$ bv^0(\ mathbb r^n)= h^1(\ mathbb r^n)$和$ s^{α,p}(\ mathbb r^n)= l^n)= l^n) r^n)$和$ l^{α,p}(\ mathbb r^n)$分别是(真实的)hardy空间和贝塞尔电位空间。然后,我们证明,分数梯度$ \ nabla^α$强烈收敛于riesz转换为$α\ to0^+$ for $ h^1 \ cap w^{α,1} $和$ s^{α,p} $函数。我们还研究了$ l^1 $ norm $ w^{α,1} $ functions的$ l^1 $ norm的收敛性。为了将$ \ nabla^α$的强限制行为作为$α\ to0^+$,我们证明了一些新的分数插值不平等,这些不平等相对于interpolation参数稳定。
We continue the study of the space $BV^α(\mathbb R^n)$ of functions with bounded fractional variation in $\mathbb R^n$ and of the distributional fractional Sobolev space $S^{α,p}(\mathbb R^n)$, with $p\in [1,+\infty]$ and $α\in(0,1)$, considered in the previous works arXiv:1809.08575 and arXiv:1910.13419. We first define the space $BV^0(\mathbb R^n)$ and establish the identifications $BV^0(\mathbb R^n)=H^1(\mathbb R^n)$ and $S^{α,p}(\mathbb R^n)=L^{α,p}(\mathbb R^n)$, where $H^1(\mathbb R^n)$ and $L^{α,p}(\mathbb R^n)$ are the (real) Hardy space and the Bessel potential space, respectively. We then prove that the fractional gradient $\nabla^α$ strongly converges to the Riesz transform as $α\to0^+$ for $H^1\cap W^{α,1}$ and $S^{α,p}$ functions. We also study the convergence of the $L^1$-norm of the $α$-rescaled fractional gradient of $W^{α,1}$ functions. To achieve the strong limiting behavior of $\nabla^α$ as $α\to0^+$, we prove some new fractional interpolation inequalities which are stable with respect to the interpolating parameter.