论文标题

在不同长度的图案介电屏障放电中的等离子体传播动力学

Plasma propagation dynamics in a patterned dielectric barrier discharge at different length scales

论文作者

Mujahid, Zaka-ul-islam, Schulze, Julian

论文摘要

堆积的床等离子体反应器(PBPR)固有地具有复杂的几何形状,其中电极之间的体积充满了介电/催化颗粒,以形成一系列空隙和空腔。该设计产生多个长度尺度,即等离子区域(厘米的顺序),介电/催化颗粒(毫米的阶数)以及介电(或腔(或腔)和/或表面孔之间的空隙的尺寸。等离子体形成是连接或分段的微型电荷的阵列。对这些不同长度尺度的血浆传播的理解对于优化和控制这一过程很重要。在这项工作中,我们使用相位和空间分辨的光学发射光谱(PROES)在大气压力下在大气压下以氦气运行的PBPRS(PBPRS,一个图案化的介电屏障放电(P-DBD),在不同的长度尺度上的排放形成和传播作为所应用电压的函数。 p-DBD基于一系列面向玻璃半球的等离子体,该等离子体实现为两个电极之一,并定期以六边形图案排列。在最小间隙的位置,将血浆作为丝状微型汇,然后在介电表面上径向加速电子,作为表面电离波,最终在粒子之间的空隙(即接触点)之间形成表面微型载体。随着电压振幅的增加,在接触点处产生了表面微型电荷的随后脉冲。发现每种表面微递减(S-MD)的血浆发射由显微镜结构组成,其发射强度随驱动电压振幅的函数而增加。相邻的微型电荷相互作用,以产生从阵列中心到边缘的波状发射强度传播。

Packed bed plasma reactors (PBPRs) inherently have complex geometries where the volume between the electrodes is filled with dielectric/catalytic pellets to form an array of voids and cavities. This design generates multiple length scales i.e. the dimension of the plasma region (of the order of centimeters), of the dielectric/catalytic pellets (of the order of millimeters) and of the void between the dielectrics (or cavities) and/or surface pores that can reach micrometer dimensions. The plasma is formed as an array of connected or segmented microdischarges. The understanding of plasma propagation on these diverse length scales is important in optimizing and controlling this process. In this work, we investigate the discharge formation and propagation at different length scales as a function of applied voltage in a simplified design of PBPRs, a patterned dielectric barrier discharge (p-DBD), operated in helium at atmospheric pressure, using phase and space resolved optical emission spectroscopy (PROES). The p-DBD is based on an array of plasma facing glass hemispheres implemented into one of two electrodes and regularly arranged in a hexagonal pattern. The plasma is initiated as filamentary microdischarges at the positions of minimum gap followed by radial acceleration of electrons over the dielectric surface as surface ionization waves to finally form surface microdischarges at the voids between the pellets, i.e. at the contact points. With the increase of the voltage amplitude, subsequent pulses of surface microdischarges are generated at the contact points. The plasma emission of each of the surface micro-discharges (S-MD) is found to consist of microscopic structures whose emission intensity increases as a function of the driving voltage amplitude. Adjacent microdischarges interact to generate a wave-like emission intensity propagation from the center of the array to the edges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源