论文标题
复杂的查询回答神经链接预测指标
Complex Query Answering with Neural Link Predictors
论文作者
论文摘要
神经链路预测因子对于识别大规模知识图中缺失的边缘非常有用。但是,仍然尚不清楚如何使用这些模型来回答许多域中出现的更复杂的查询,例如使用逻辑连词($ \ land $)的查询($ \ lor $)和存在的量化器($ \ exists $),同时核算缺失的EDGE。在这项工作中,我们提出了一个框架,以有效地回答不完整的知识图上的复杂查询。我们将每个查询转换为一个端到端的可区分目标,其中每个原子的真实价值都是由预先训练的神经链接预测指标计算的。然后,我们分析了两个解决方案的优化问题,包括基于梯度和组合搜索。在我们的实验中,所提出的方法比最新的方法(在数百万个生成的查询中训练的黑盒神经模型)产生的结果更准确,而无需对大型多样的复杂查询集进行培训。使用较小的培训数据阶数,我们获得的相对改进范围从包含事实信息的不同知识图中的8%至40%的命中@3。最后,我们证明可以根据每个复杂查询原子确定的中间解决方案来解释我们的模型的结果。我们所有的源代码和数据集可在线访问https://github.com/uclnlp/cqd。
Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions ($\land$), disjunctions ($\lor$) and existential quantifiers ($\exists$), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms. All our source code and datasets are available online, at https://github.com/uclnlp/cqd.