论文标题

贝叶斯安全:不是那么普通的度量

Bayes Security: A Not So Average Metric

论文作者

Chatzikokolakis, Konstantinos, Cherubin, Giovanni, Palamidessi, Catuscia, Troncoso, Carmela

论文摘要

安全系统设计师赞成最差的安全指标,例如由于强大的保证提供了差异隐私(DP)的指标。不利的一面是,这些保证导致对系统性能的惩罚。在本文中,我们研究了贝叶斯安全,这是一个受密码优势启发的安全指标。与DP类似,贝叶斯安全i)独立于对手的先验知识,ii)它捕获了两个最脆弱的秘密(例如,数据记录)的最坏情况; iii)很容易组成,促进安全分析。此外,贝叶斯安全性IV)可以始终以黑盒方式估算,与DP相反,当形式分析不可行时,这很有用; v)在高安全性制度中提供了更好的公用事业安全权衡,因为它量化了特定威胁模型的风险,而不是威胁性不足的指标,例如DP。我们制定了围绕贝叶斯安全性的理论,并就众所周知的指标进行了详尽的比较,并确定了贝叶斯安全对设计师有利的方案。

Security system designers favor worst-case security metrics, such as those derived from differential privacy (DP), due to the strong guarantees they provide. On the downside, these guarantees result in a high penalty on the system's performance. In this paper, we study Bayes security, a security metric inspired by the cryptographic advantage. Similarly to DP, Bayes security i) is independent of an adversary's prior knowledge, ii) it captures the worst-case scenario for the two most vulnerable secrets (e.g., data records); and iii) it is easy to compose, facilitating security analyses. Additionally, Bayes security iv) can be consistently estimated in a black-box manner, contrary to DP, which is useful when a formal analysis is not feasible; and v) provides a better utility-security trade-off in high-security regimes because it quantifies the risk for a specific threat model as opposed to threat-agnostic metrics such as DP. We formulate a theory around Bayes security, and we provide a thorough comparison with respect to well-known metrics, identifying the scenarios where Bayes Security is advantageous for designers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源