论文标题
线性分数组为GALOIS组
Linear fractional group as Galois group
论文作者
论文摘要
我们计算$ PSL_2(\ MATHBB {F} _7)$的所有签名和$ PSL_2(\ Mathbb {f} _ {11})$,该$分类了所有方向保存$ psl_2(\ Mathbb {f} _7)$和$ psl_2(\ nath $ psl_2(\ nath)$ psl_2(在紧凑,连接的,可定向的表面,带有Orbifold属$ \ geq 0 $。该分类在数学的其他分支中得到很好的基础,例如拓扑,平滑和形式的几何形状,代数类别,并且也与逆Galois问题直接相关。
We compute all signatures of $PSL_2(\mathbb{F}_7)$, and $PSL_2(\mathbb{F}_{11})$ which classify all orientation preserving actions of the groups $PSL_2(\mathbb{F}_7)$, and $PSL_2(\mathbb{F}_{11})$ on compact, connected, orientable surfaces with orbifold genus $\geq 0$. This classification is well-grounded in the other branches of Mathematics like topology, smooth, and conformal geometry, algebraic categories, and it is also directly related to the inverse Galois problem.