论文标题

加权点的顶点耐故障几何跨度

Vertex Fault-Tolerant Geometric Spanners for Weighted Points

论文作者

Bhattacharjee, Sukanya, Inkulu, R.

论文摘要

给定n个点的一组s,重量函数w可以将非负重量与s中的每个点相关联,正整数k \ ge 1和一个实数ε> 0,我们提出了计算跨度网络g(s,e)的算法,用于计算速度空间(s,d_w)的距离。 s,d_w(p,q)等于w(p) +d_π(p,q) + w(q),如果p \ ne q,否则,d_w(p,q)为0。在这里,d_π(p,q)是p和q之间的欧几里得距离(p,q),q之间的euclidean距离是\ andbb {r}^d,eucean and qe eudean(euce)(euce),则是eudean(euce)(euce)。以下是我们的结果:(1)当s中的加权点位于\ mathbb {r}^d中时,我们计算一个k-vertex耐受耐受剂(4+ε) - 大小O(k n)的Spanner网络。 (2)当s中的加权点位于多边形域\ cal p的自由空间的相对内部时,我们详细详细介绍了一种算法来计算具有O(\ frac {kn \ sqrt {kn \ sqrt {h+1}}}}^} {^2} {^2}的k-vertex耐受性(4+ε)-Spanner网络。在这里,H是\ Cal P中的简单多边形孔的数量(3)当S中的加权点位于多面体地形\ Cal T上时,我们提出了一种算法来计算一个k-vertex butteranterant(4+ε) - Spanner网络,并且该网络中的Edges数量是O( \ lg {n})。

Given a set S of n points, a weight function w to associate a non-negative weight to each point in S, a positive integer k \ge 1, and a real number ε> 0, we present algorithms for computing a spanner network G(S, E) for the metric space (S, d_w) induced by the weighted points in S. The weighted distance function d_w on the set S of points is defined as follows: for any p, q \in S, d_w(p, q) is equal to w(p) + d_π(p, q) + w(q) if p \ne q, otherwise, d_w(p, q) is 0. Here, d_π(p, q) is the Euclidean distance between p and q if points in S are in \mathbb{R}^d, otherwise, it is the geodesic (Euclidean) distance between p and q. The following are our results: (1) When the weighted points in S are located in \mathbb{R}^d, we compute a k-vertex fault-tolerant (4+ε)-spanner network of size O(k n). (2) When the weighted points in S are located in the relative interior of the free space of a polygonal domain \cal P, we detail an algorithm to compute a k-vertex fault-tolerant (4+ε)-spanner network with O(\frac{kn\sqrt{h+1}}{ε^2} \lg{n}) edges. Here, h is the number of simple polygonal holes in \cal P. (3) When the weighted points in S are located on a polyhedral terrain \cal T, we propose an algorithm to compute a k-vertex fault-tolerant (4+ε)-spanner network, and the number of edges in this network is O(\frac{kn}{ε^2} \lg{n}).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源