论文标题
超越边际不确定性:贝叶斯回归模型如何准确地估计后验预测相关性?
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
论文作者
论文摘要
虽然不确定性估计是深度学习中一个充分研究的主题,但大多数此类工作都集中在边缘不确定性估计上,即单个输入位置的预测平均值和差异。但是,它通常对于估计不同输入位置的函数值之间的预测相关性更为有用。在本文中,我们考虑了基准确定贝叶斯模型可以估计预测相关性的问题的问题。我们首先考虑一个取决于后验预测相关性的下游任务:跨导态积极学习(TAL)。我们发现,TAL比普通的主动学习更好地利用模型的不确定性估计值,并将其作为评估贝叶斯模型的基准。由于TAL太昂贵且间接无法指导算法的开发,因此我们介绍了两个指标,这些指标更直接地评估了预测相关性,并且可以有效地计算出:元相关(即模型相关估计值和真实值之间的相关性),以及交叉范围均衡(XLL)。我们通过证明它们与TAL性能的一致性并获得有关当前贝叶斯神经网和高斯过程模型相对性能的见解来验证这些指标。
While uncertainty estimation is a well-studied topic in deep learning, most such work focuses on marginal uncertainty estimates, i.e. the predictive mean and variance at individual input locations. But it is often more useful to estimate predictive correlations between the function values at different input locations. In this paper, we consider the problem of benchmarking how accurately Bayesian models can estimate predictive correlations. We first consider a downstream task which depends on posterior predictive correlations: transductive active learning (TAL). We find that TAL makes better use of models' uncertainty estimates than ordinary active learning, and recommend this as a benchmark for evaluating Bayesian models. Since TAL is too expensive and indirect to guide development of algorithms, we introduce two metrics which more directly evaluate the predictive correlations and which can be computed efficiently: meta-correlations (i.e. the correlations between the models correlation estimates and the true values), and cross-normalized likelihoods (XLL). We validate these metrics by demonstrating their consistency with TAL performance and obtain insights about the relative performance of current Bayesian neural net and Gaussian process models.