论文标题
IMU辅助学习单视图滚动快门校正
IMU-Assisted Learning of Single-View Rolling Shutter Correction
论文作者
论文摘要
对于摄影和计算机视觉算法(例如,视觉大满贯)而言,滚动快门失真是高度不希望的,因为可以在不同的时间和姿势下捕获像素。在本文中,我们提出了一个深层神经网络,以预测从单个图像的深度和行姿势进行滚动快门校正。我们在这项工作中的贡献是将惯性测量单元(IMU)数据纳入姿势细化过程,与最新的姿势相比,这大大增强了姿势预测。提高的精度和鲁棒性使许多视力算法使用滚动快门摄像机捕获并产生高度准确的结果成为可能。我们还扩展了一个数据集,以具有真实的滚动快门图像,IMU数据,深度图,相机姿势和相应的全局快门图像,用于滚动快门校正训练。我们通过评估使用拟议方法校正的滚动快门图像上直接稀疏探光剂(DSO)算法的性能来证明所提出方法的功效。结果表明,使用未校正的图像比使用未校正的图像验证了所提出的方法明显改善。
Rolling shutter distortion is highly undesirable for photography and computer vision algorithms (e.g., visual SLAM) because pixels can be potentially captured at different times and poses. In this paper, we propose a deep neural network to predict depth and row-wise pose from a single image for rolling shutter correction. Our contribution in this work is to incorporate inertial measurement unit (IMU) data into the pose refinement process, which, compared to the state-of-the-art, greatly enhances the pose prediction. The improved accuracy and robustness make it possible for numerous vision algorithms to use imagery captured by rolling shutter cameras and produce highly accurate results. We also extend a dataset to have real rolling shutter images, IMU data, depth maps, camera poses, and corresponding global shutter images for rolling shutter correction training. We demonstrate the efficacy of the proposed method by evaluating the performance of Direct Sparse Odometry (DSO) algorithm on rolling shutter imagery corrected using the proposed approach. Results show marked improvements of the DSO algorithm over using uncorrected imagery, validating the proposed approach.