论文标题
机器学习气候模型动态:离线与在线性能
Machine Learning Climate Model Dynamics: Offline versus Online Performance
论文作者
论文摘要
气候模型是复杂的软件系统,以粗糙的空间分辨率近似大气和海洋流体力学。典型的气候预测仅明确解析大于100 km的过程,并使用所谓的参数化近似于此量表以下的任何过程(例如雷暴)。机器学习可以通过从所谓的全球云分辨模型中学习来提高某些传统物理参数化的准确性。我们比较了两个机器学习模型,即随机森林(RF)和神经网络(NNS)的性能,以通过大气模型在3 km分辨率的全球仿真中参数潮湿物理的总体效应。在测试数据集上离线评估时,NN胜过RF。但是,当将ML模型耦合到以200公里分辨率运行的大气模型时,NN辅助模拟崩溃的崩溃为7天,而RF辅助模拟仍保持稳定。这两种运行都比基线配置产生更准确的天气预测,但是全球平均的气候变量在较长的时间尺度上漂移。
Climate models are complicated software systems that approximate atmospheric and oceanic fluid mechanics at a coarse spatial resolution. Typical climate forecasts only explicitly resolve processes larger than 100 km and approximate any process occurring below this scale (e.g. thunderstorms) using so-called parametrizations. Machine learning could improve upon the accuracy of some traditional physical parametrizations by learning from so-called global cloud-resolving models. We compare the performance of two machine learning models, random forests (RF) and neural networks (NNs), at parametrizing the aggregate effect of moist physics in a 3 km resolution global simulation with an atmospheric model. The NN outperforms the RF when evaluated offline on a testing dataset. However, when the ML models are coupled to an atmospheric model run at 200 km resolution, the NN-assisted simulation crashes with 7 days, while the RF-assisted simulations remain stable. Both runs produce more accurate weather forecasts than a baseline configuration, but globally averaged climate variables drift over longer timescales.