论文标题

分位数回归估计器的偏差校正

Bias correction for quantile regression estimators

论文作者

Franguridi, Grigory, Gafarov, Bulat, Wuthrich, Kaspar

论文摘要

我们研究了经典分位数回归和仪器可变回归估计值的偏见。虽然是渐近的一阶无偏见,但这些估计量可能具有不可忽略的二阶偏见。我们使用经验过程理论得出了这些估计量的高阶随机扩展。基于此扩展,我们得出了二阶偏差的明确公式,并提出了使用偏置组件的有限差异估计量的可行偏差校正程序。所提出的偏置校正方法在模拟中表现良好。我们使用恩格尔(Engel)的家庭食品支出的经典数据提供了经验插图。

We study the bias of classical quantile regression and instrumental variable quantile regression estimators. While being asymptotically first-order unbiased, these estimators can have non-negligible second-order biases. We derive a higher-order stochastic expansion of these estimators using empirical process theory. Based on this expansion, we derive an explicit formula for the second-order bias and propose a feasible bias correction procedure that uses finite-difference estimators of the bias components. The proposed bias correction method performs well in simulations. We provide an empirical illustration using Engel's classical data on household food expenditure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源