论文标题

可划分代码的气缸猜想的概括

A generalization of the cylinder conjecture for divisible codes

论文作者

Kurz, Sascha, Mattheus, Sam

论文摘要

我们将仿射三维空间的点集的原始气缸猜想扩展到了$ \ mathbb {f} _q $及其分类的更通用的线性代码的更通用框架。通过线性编程,组合技术和计算机枚举的混合,我们研究了这些代码的结构特性。通过这种方式,我们可以证明对圆柱体猜想的概括的降低定理,显示了某些情况下它不保持并证明其对$ q $的小值的有效性。特别是,我们以$ q = 5 $的价格纠正原始气缸猜想的有缺陷的证据,并以$ q = 7 $的形式提供了第一个证明。

We extend the original cylinder conjecture on point sets in affine three-dimensional space to the more general framework of divisible linear codes over $\mathbb{F}_q$ and their classification. Through a mix of linear programming, combinatorial techniques and computer enumeration, we investigate the structural properties of these codes. In this way, we can prove a reduction theorem for a generalization of the cylinder conjecture, show some instances where it does not hold and prove its validity for small values of $q$. In particular, we correct a flawed proof for the original cylinder conjecture for $q = 5$ and present the first proof for $q = 7$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源