论文标题

通过多任务学习和位置损失改善机器人抓握单眼图像

Improving Robotic Grasping on Monocular Images Via Multi-Task Learning and Positional Loss

论文作者

Prew, William, Breckon, Toby, Bordewich, Magnus, Beierholm, Ulrik

论文摘要

在本文中,我们介绍了两种改进端到端CNN体系结构中单眼颜色图像的实时对象性能的方法。首先是在模型培训(多任务学习)中增加辅助任务。在执行补充深度重建任务时,我们的多任务CNN模型从大型jacquard握把数据集中的基线平均值提高了72.04%,提高到78.14%。第二个是引入一个位置损失函数,该函数强调仅在可以进行成功掌握的对象的点上,仅在对象的点上,每像素的次级参数(抓地角和宽度)仅在次级参数(抓地力角度和宽度)上。这将基线平均水平从72.04%增加到78.92%,并减少所需训练时期的数量。这些方法也可以同时执行,从而导致进一步的性能提高到79.12%,同时保持足够的推理速度以实时掌握处理。

In this paper, we introduce two methods of improving real-time object grasping performance from monocular colour images in an end-to-end CNN architecture. The first is the addition of an auxiliary task during model training (multi-task learning). Our multi-task CNN model improves grasping performance from a baseline average of 72.04% to 78.14% on the large Jacquard grasping dataset when performing a supplementary depth reconstruction task. The second is introducing a positional loss function that emphasises loss per pixel for secondary parameters (gripper angle and width) only on points of an object where a successful grasp can take place. This increases performance from a baseline average of 72.04% to 78.92% as well as reducing the number of training epochs required. These methods can be also performed in tandem resulting in a further performance increase to 79.12% while maintaining sufficient inference speed to afford real-time grasp processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源