论文标题

用于在3D头模型上电阻断层扫描中中风分类的神经网络

Neural networks for classification of strokes in electrical impedance tomography on a 3D head model

论文作者

Candiani, Valentina, Santacesaria, Matteo

论文摘要

我们考虑了从三维(3D)电阻抗(EIT)测量中检测到脑出血的问题。这是需要紧急治疗的疾病,EIT可以提供便携式和快速诊断。我们采用两种神经网络架构(一种完全连接的卷积和卷积)来分类出血和缺血性中风。这些网络经过$ 40 \,000 $的合成电极测量样本在具有3层结构的现实头部的完整电极模型中生成的合成电极测量样本。我们考虑头部解剖结构和层的变化,电极位置,测量噪声和电导率值。然后,我们在几个看不见的EIT数据数据集上测试网络,具有更复杂的中风建模(不同的形状和体积),较高的噪声和不同量的电极放置。在大多数测试数据集中,我们实现了完全连接的神经网络的$ \ geq 90 \%$的平均准确性,而卷积的卷积精度为$ \ geq 80 \%$。尽管使用了简单的神经网络体系结构,但获得的结果还是非常有前途的,并激发了基于EIT的分类方法在实际幻象上的应用,最终是对人类患者的应用。

We consider the problem of the detection of brain hemorrhages from three dimensional (3D) electrical impedance tomography (EIT) measurements. This is a condition requiring urgent treatment for which EIT might provide a portable and quick diagnosis. We employ two neural network architectures -- a fully connected and a convolutional one -- for the classification of hemorrhagic and ischemic strokes. The networks are trained on a dataset with $40\,000$ samples of synthetic electrode measurements generated with the complete electrode model on realistic heads with a 3-layer structure. We consider changes in head anatomy and layers, electrode position, measurement noise and conductivity values. We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling (different shapes and volumes), higher levels of noise and different amounts of electrode misplacement. On most test datasets we achieve $\geq 90\%$ average accuracy with fully connected neural networks, while the convolutional ones display an average accuracy $\geq 80\%$. Despite the use of simple neural network architectures, the results obtained are very promising and motivate the applications of EIT-based classification methods on real phantoms and ultimately on human patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源