论文标题
(强)拓扑陀螺的可分离性
Separability in (strongly) topological gyrogroups
论文作者
论文摘要
可分离性是最基本,最重要的拓扑特性之一。在本文中,研究了(强)拓扑陀螺仪中的可分离性。事实证明,每一个可分离的左ω-纳尔都可以分离。此外,结果表明,如果羽毛强烈的拓扑陀螺仪G与可分离的强拓扑陀螺仪的子gyro群是同构的,则G是可分离的。因此,如果可分离的强烈拓扑陀螺仪的可分离的可分离的近代群具有同构,则G是可分离的,并且如果局部紧凑的强烈拓扑陀螺仪Gyropoloup G是与可分开的强拓扑吉利群的亚育型的同构,那么g是可分开的。
Separability is one of the most basic and important topological properties. In this paper, the separability in (strongly) topological gyrogroups is studied. It is proved that every first-countable left ω-narrow strongly topological gyrogroup is separable. Furthermore, it is shown that if a feathered strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological gyrogroup, then G is separable. Therefore, if a metrizable strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological gyrogroup, then G is separable, and if a locally compact strongly topological gyrogroup G is isomorphic to a subgyrogroup of a separable strongly topological gyrogroup, then G is separable.