论文标题
gelfand- $(2n+1)$的graev代表hecke代数
The Gelfand--Graev representation of SO$(2n+1)$ in terms of Hecke algebras
论文作者
论文摘要
令$ g $为$ p $ - 亚法古典集团。给定的伯恩斯坦组件中的表示形式可以看作是相应的Hecke代数的模块---给定分量的促生基因的内态代数。使用Heiermann的这些代数构建,我们描述了Gelfand的Bernstein组件 - Graev代表$ G = $ so $ so $ so $(2n+1)$。
Let $G$ be a $p$-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra---the endomorphism algebra of a pro-generator of the given component. Using Heiermann's construction of these algebras, we describe the Bernstein components of the Gelfand--Graev representation for $G=$SO$(2n+1)$.