论文标题
真实面孔的超级分辨率
Super-Resolution of Real-World Faces
论文作者
论文摘要
真正的低分辨率(LR)面部图像包含降解,这些降解太变量和复杂,无法通过已知的下采样内核和信号无关的噪声来捕获。因此,为了成功地超级溶解真实面孔,一种方法需要对广泛的噪声,模糊,压缩工件等进行稳健。最近的一些作品试图使用生成的对抗性网络(GAN)对真实图像的数据集建模这些降解。它们生成合成的LR图像,并与相应的真实高分辨率(HR)图像一起使用它们,以使用像素损失和对抗性损失的组合来训练超分辨率(SR)网络。在本文中,我们提出了一个两个模块的超分辨率网络,其中特征提取器模块从LR图像中提取了可靠的特征,而SR模块仅使用这些可靠的功能生成HR估算值。我们训练一个降解gan,将两合一采样的干净图像转换为真实的降级图像,并在获得的降级LR图像与其干净的LR对应物之间进行插值。然后将此插值的LR图像与相应的HR对应物一起使用,以从端到头训练超分辨率网络。熵正规化的Wasserstein Divergence用于迫使从干净和退化的图像中学到的编码特征与从插值图像中提取的图像非常相似,以确保稳健性。
Real low-resolution (LR) face images contain degradations which are too varied and complex to be captured by known downsampling kernels and signal-independent noises. So, in order to successfully super-resolve real faces, a method needs to be robust to a wide range of noise, blur, compression artifacts etc. Some of the recent works attempt to model these degradations from a dataset of real images using a Generative Adversarial Network (GAN). They generate synthetically degraded LR images and use them with corresponding real high-resolution(HR) image to train a super-resolution (SR) network using a combination of a pixel-wise loss and an adversarial loss. In this paper, we propose a two module super-resolution network where the feature extractor module extracts robust features from the LR image, and the SR module generates an HR estimate using only these robust features. We train a degradation GAN to convert bicubically downsampled clean images to real degraded images, and interpolate between the obtained degraded LR image and its clean LR counterpart. This interpolated LR image is then used along with it's corresponding HR counterpart to train the super-resolution network from end to end. Entropy Regularized Wasserstein Divergence is used to force the encoded features learnt from the clean and degraded images to closely resemble those extracted from the interpolated image to ensure robustness.