论文标题

超冷液体中柔软度的微观理论

A Microscopic Theory of Softness in Supercooled Liquids

论文作者

Nandi, Manoj Kumar, Bhattacharyya, Sarika Maitra

论文摘要

我们介绍了液体结构的新量度,这是我们早些时候开发的平均场势的柔软度。我们发现这种柔软度对结构的小变化很敏感。然后,我们研究其与超冷液体动力学的相关性。该研究涉及多种液体(脆弱,强,有吸引力,排斥和活跃),并预测一些普遍的行为,例如柔软度与温度成正比,与与系统依赖性相对性常数的动态屏障成反比。我们在动力学和柔软度参数之间写下主方程,并表明当温度和系统依赖参数缩放时的动力学确实显示出在针对软度绘制时的数据崩溃。脆弱液体的动力学表现出较强的柔软性依赖性,而强液的柔软性依赖性却弱得多。我们还将本研究与涉及机器学习的柔软度(ML)的较早研究联系起来,从而提供了理论框架来理解ML结果。

We introduce a new measure of the structure of a liquid which is the softness of the mean-field potential developed by us earlier. We find that this softness is sensitive to small changes in the structure. We then study its correlation with the supercooled liquid dynamics. The study involves a wide range of liquids (fragile, strong, attractive, repulsive, and active) and predicts some universal behaviours like the softness is linearly proportional to the temperature and inversely proportional to the activation barrier of the dynamics with system dependent proportionality constants. We write down a master equation between the dynamics and the softness parameter and show that indeed the dynamics when scaled by the temperature and system dependent parameters show a data collapse when plotted against softness. The dynamics of fragile liquids show a strong softness dependence whereas that of strong liquids show a much weaker softness dependence. We also connect the present study with the earlier studies of softness involving machine learning (ML) thus providing a theoretical framework for understanding the ML results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源