论文标题
潜在因果不变模型
Latent Causal Invariant Model
论文作者
论文摘要
当前的监督学习可以在数据拟合过程中学习虚假的相关性,对可解释性,分布(OOD)概括和鲁棒性施加问题。为了避免虚假的相关性,我们提出了一个潜在的因果不变性模型(LACIM),该模型追求因果预测。具体而言,我们介绍了分离为(a)输出促成因素的潜在变量,以及(b)通过混杂因素与输出相关的其他变量,以建模基本的因果因素。我们进一步假设从潜在空间到观察到的数据的生成机制是因果不变的。我们给出了这种不变性的可识别主张,尤其是与他人的输出疗法因素的解散,作为确切推断和避免虚假相关性的理论保证。我们提出了一种基于差异的bayesian方法,用于估计并在预测的潜在空间上进行优化。通过改进的解释性,对各种OOD方案(包括医疗保健)的预测能力以及安全性的鲁棒性,我们的方法的实用性得到了验证。
Current supervised learning can learn spurious correlation during the data-fitting process, imposing issues regarding interpretability, out-of-distribution (OOD) generalization, and robustness. To avoid spurious correlation, we propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction. Specifically, we introduce latent variables that are separated into (a) output-causative factors and (b) others that are spuriously correlated to the output via confounders, to model the underlying causal factors. We further assume the generating mechanisms from latent space to observed data to be causally invariant. We give the identifiable claim of such invariance, particularly the disentanglement of output-causative factors from others, as a theoretical guarantee for precise inference and avoiding spurious correlation. We propose a Variational-Bayesian-based method for estimation and to optimize over the latent space for prediction. The utility of our approach is verified by improved interpretability, prediction power on various OOD scenarios (including healthcare) and robustness on security.