论文标题

自主3D探索的多分辨率前沿计划者

A Multi-Resolution Frontier-Based Planner for Autonomous 3D Exploration

论文作者

Batinović, Ana, Petrović, Tamara, Ivanovic, Antun, Petric, Frano, Bogdan, Stjepan

论文摘要

在本文中,我们提出了一个针对3D探索的计划者,适用于使用最先进的3D传感器(例如LIDARS)的应用,每次扫描都会产生大点云。规划师基于对环境的探索部分和未知部分之间的边界的检测 - 由用于检测边境点的算法组成,然后是边界点的聚类并选择要探索的最佳边界点。与现有的基于边界的方法相比,计划器更可扩展,即,在确保相同的探索时间的同时,需要更少的时间来进行相同的数据集大小。性能是通过不依赖于直接从3D传感器获得的数据而是通过映射算法获得的数据来实现的。为了聚集边界点,我们使用OCTREE环境表示的属性,该属性可以通过不同的分辨率进行分析。在模拟环境和室外测试区域中测试了计划者,并配备了带有激光雷达传感器的无人机。结果表明方法的优势。

In this paper we propose a planner for 3D exploration that is suitable for applications using state-of-the-art 3D sensors such as lidars, which produce large point clouds with each scan. The planner is based on the detection of a frontier - a boundary between the explored and unknown part of the environment - and consists of the algorithm for detecting frontier points, followed by clustering of frontier points and selecting the best frontier point to be explored. Compared to existing frontier-based approaches, the planner is more scalable, i.e. it requires less time for the same data set size while ensuring similar exploration time. Performance is achieved by not relying on data obtained directly from the 3D sensor, but on data obtained by a mapping algorithm. In order to cluster the frontier points, we use the properties of the Octree environment representation, which allows easy analysis with different resolutions. The planner is tested in the simulation environment and in an outdoor test area with a UAV equipped with a lidar sensor. The results show the advantages of the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源