论文标题

准蒙特卡洛时频分析

Quasi Monte Carlo Time-Frequency Analysis

论文作者

Levie, Ron, Avron, Haim, Kutyniok, Gitta

论文摘要

我们研究信号处理任务,其中信号通过一些广义的时频转换映射到在此处处理并合成到输出信号的较高维时频空间。我们展示了如何使用准蒙特卡洛(QMC)方法近似此类方法。我们考虑时间频表示是冗余的情况,除了时间和频率轴外,还具有特征轴。提出的QMC方法允许有效且均匀地进行此类冗余时频表示。实际上,1)在信号空间的分辨率中,一定准确性所需的样品数量是对数线性的,并且仅弱取决于冗余时频空间的尺寸,以及2)准随机样品的差异较低,因此它们在冗余的时间频率空间中均匀分布。这种冗余表示形式的一个例子是定位的时频变换(LTFT),其中第三轴增强了时频平面。这个较高的尺寸时频空间可提高某些时频信号处理任务的质量,例如相位vocoder(音频信号处理效果)。由于QMC的计算复杂性在信号空间的分辨率中是对数线性的,因此该较高的时间频空间不会降低所提出的QMC方法的计算复杂性。提出的QMC方法比标准蒙特卡洛方法更有效,因为确定性的QMC样品点在时间频空间中最佳扩散,而随机样品却没有。

We study signal processing tasks in which the signal is mapped via some generalized time-frequency transform to a higher dimensional time-frequency space, processed there, and synthesized to an output signal. We show how to approximate such methods using a quasi-Monte Carlo (QMC) approach. We consider cases where the time-frequency representation is redundant, having feature axes in addition to the time and frequency axes. The proposed QMC method allows sampling both efficiently and evenly such redundant time-frequency representations. Indeed, 1) the number of samples required for a certain accuracy is log-linear in the resolution of the signal space, and depends only weakly on the dimension of the redundant time-frequency space, and 2) the quasi-random samples have low discrepancy, so they are spread evenly in the redundant time-frequency space. One example of such redundant representation is the localizing time-frequency transform (LTFT), where the time-frequency plane is enhanced by a third axis. This higher dimensional time-frequency space improves the quality of some time-frequency signal processing tasks, like the phase vocoder (an audio signal processing effect). Since the computational complexity of the QMC is log-linear in the resolution of the signal space, this higher dimensional time-frequency space does not degrade the computation complexity of the proposed QMC method. The proposed QMC method is more efficient than standard Monte Carlo methods, since the deterministic QMC sample points are optimally spread in the time-frequency space, while random samples are not.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源