论文标题

五位vertex模型的决定符公式

Determinant formulas for the five-vertex model

论文作者

Burenev, Ivan N., Pronko, Andrei G.

论文摘要

我们考虑具有固定边界条件的有限正方形晶格上的五个vertex模型,以使模型的配置与盒装平面分区一对一(3D Young图,适合给定尺寸的盒子)。不均匀模型的分区函数是根据决定因素给出的。对于同质模型,可以根据汉克尔的决定因素给出。我们还表明,在同质情况下,分区函数是第六次painlevé方程相对于重量的快速变量的$τ$。

We consider the five-vertex model on a finite square lattice with fixed boundary conditions such that the configurations of the model are in a one-to-one correspondence with the boxed plane partitions (3D Young diagrams which fit into a box of given size). The partition function of an inhomogeneous model is given in terms of a determinant. For the homogeneous model, it can be given in terms of a Hankel determinant. We also show that in the homogeneous case the partition function is a $τ$-function of the sixth Painlevé equation with respect to the rapidity variable of the weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源