论文标题

机器学习引力波从二进制黑洞合并

Machine Learning Gravitational Waves from Binary Black Hole Mergers

论文作者

Schmidt, Stefano, Breschi, Matteo, Gamba, Rossella, Pagano, Giulia, Rettegno, Piero, Riemenschneider, Gunnar, Bernuzzi, Sebastiano, Nagar, Alessandro, Del Pozzo, Walter

论文摘要

我们应用机器学习方法来构建来自二进制黑洞合并的重力波形的时间域模型,称为MLGW。通过使用主成分分析来表示波形的幅度和相位来处理问题的维度。我们在约$ \ Mathcal {O}(10^3)上训练MLGW $ teobresums和seobnrv4有效的一体波形,质量比$ q \ in [1,20] $ in [1,20] $,并对齐无尺寸的无量音spins $ s \ in [-0.80,0.95] $。最终的模型忠实于$ {\ sim} 10^{ - 3} $ Level(在参数空间上平均)的训练集。单波形生成的速度是TeoBresums的10至50(取决于二进制质量和初始频率),而SeoBNRV4的速度大约要多。此外,MLGW为波形提供了相对于轨道参数的封闭形式表达式;这样的信息可能对GW数据分析的未来改进很有用。为了证明MLGW执行完整参数估计的功能,我们从第一个GW瞬态目录(GWTC-1)重新分析了公共数据。我们发现以前分析的成本分析很大一致,尽管用自旋排列波形的分析给出了有效旋转的系统较大值,相对于先前使用预发浪波形的分析。由于生成时间不取决于信号的长度,因此我们的模型特别适合分析由第三代探测器检测到的长信号。未来的应用包括在参数估计中对波形系统学和模型选择的分析。

We apply machine learning methods to build a time-domain model for gravitational waveforms from binary black hole mergers, called mlgw. The dimensionality of the problem is handled by representing the waveform's amplitude and phase using a principal component analysis. We train mlgw on about $\mathcal{O}(10^3)$ TEOBResumS and SEOBNRv4 effective-one-body waveforms with mass ratios $q\in[1,20]$ and aligned dimensionless spins $s\in[-0.80,0.95]$. The resulting models are faithful to the training sets at the ${\sim}10^{-3}$ level (averaged on the parameter space). The speed up for a single waveform generation is a factor 10 to 50 (depending on the binary mass and initial frequency) for TEOBResumS and approximately an order of magnitude more for SEOBNRv4. Furthermore, mlgw provides a closed form expression for the waveform and its gradient with respect to the orbital parameters; such an information might be useful for future improvements in GW data analysis. As demonstration of the capabilities of mlgw to perform a full parameter estimation, we re-analyze the public data from the first GW transient catalog (GWTC-1). We find broadly consistent results with previous analyses at a fraction of the cost, although the analysis with spin aligned waveforms gives systematic larger values of the effective spins with respect to previous analyses with precessing waveforms. Since the generation time does not depend on the length of the signal, our model is particularly suitable for the analysis of the long signals that are expected to be detected by third-generation detectors. Future applications include the analysis of waveform systematics and model selection in parameter estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源