论文标题

黑洞和wim:全部或没有其他或其他东西

Black Holes and WIMPs: All or Nothing or Something Else

论文作者

Carr, Bernard, Kuhnel, Florian, Visinelli, Luca

论文摘要

我们考虑质量范围$(10^{ - 18} \ text { - } 10^{15})\,m _ {\ odot} $在质量范围$(10^{ - 18} \ text { - } \ odot} $(如果暗物质(DM)组成弱相互作用的大型粒子(wimps)和生成周围的halos $γ的情况下,我们会考虑对原始黑洞(PBH)的约束。我们首先研究了光环的形成,并发现其在wimp灭之前的密度分布会演变为特征性的幂律形式。由于考虑了PBH质量的广泛范围,我们的分析在以前解决此问题的方法之间建立了有趣的联系。然后,我们考虑WIMP歼灭对光晕曲线的影响以及相关的$γ$ -rays的影响。观察到的外乳外$γ$ -Ray背景暗示PBH DM分数为$ f^{} _ {\ rm pbh} \ sillssim 2 \ times 10^{ - 9} \,(m_oubous {\ rm tev}) 10^{ - 12} \,m _ {\ odot} \,(m_χ / {\ rm tev}) $m_χ$和$ m $分别是WIMP和PBH群众。该限制独立于$ m $,因此适用于任何PBH质量功能。对于$ m \ Lessim 2 \ times 10^{ - 12} \,m _ {\ odot} \,(m_χ/ {\ rm tev})^{ - 3.2} $,对$ f^{} _ {\ rm pbh} $的约束是$ m和p的降低量,$ f^{} _ {\ rm pbh} $ a $ mm $ y的功能很重要。如果DM主要是PBH,我们还考虑在WIMP上的限制。如果Ligo/处女座最近发现的合并黑洞具有原始起源,那么这将排除标准的WIMP DM方案。更一般而言,WIMP DM分数不能超过$ 10^{ - 4} $,对于$ m> 10^{ - 9} \,m _ {\ odot} $和$m_χ> 10 \,$ gev。有一个参数空间的区域,带有$ M \ Lessim 10^{ - 11} \,m _ {\ odot} $和$m_χ\ syssim 100 \,$ GEV,其中WIMPS和PBHS都可以提供一些DM但不提供所有DM,因此需要第三dm候选者。

We consider constraints on primordial black holes (PBHs) in the mass range $( 10^{-18}\text{-}10^{15} )\,M_{\odot}$ if the dark matter (DM) comprises weakly interacting massive particles (WIMPs) which form halos around them and generate $γ$-rays by annihilations. We first study the formation of the halos and find that their density profile prior to WIMP annihilations evolves to a characteristic power-law form. Because of the wide range of PBH masses considered, our analysis forges an interesting link between previous approaches to this problem. We then consider the effect of the WIMP annihilations on the halo profile and the associated generation of $γ$-rays. The observed extragalactic $γ$-ray background implies that the PBH DM fraction is $f^{}_{\rm PBH} \lesssim 2 \times 10^{-9}\,( m_χ / {\rm TeV} )^{1.1}$ in the mass range $2 \times 10^{-12}\,M_{\odot}\,( m_χ / {\rm TeV} )^{-3.2} \lesssim M \lesssim 5 \times 10^{12}\,M_{\odot}\,( m_χ / {\rm TeV} )^{1.1}$, where $m_χ$ and $M$ are the WIMP and PBH masses, respectively. This limit is independent of $M$ and therefore applies for any PBH mass function. For $M \lesssim 2\times 10^{-12}\,M_{\odot}\,( m_χ/ {\rm TeV} )^{-3.2}$, the constraint on $f^{}_{\rm PBH}$ is a decreasing function of $M$ and PBHs could still make a significant DM contribution at very low masses. We also consider constraints on WIMPs if the DM is mostly PBHs. If the merging black holes recently discovered by LIGO/Virgo are of primordial origin, this would rule out the standard WIMP DM scenario. More generally, the WIMP DM fraction cannot exceed $10^{-4}$ for $M > 10^{-9}\,M_{\odot}$ and $m_χ > 10\,$GeV. There is a region of parameter space, with $M \lesssim 10^{-11}\,M_{\odot}$ and $m_χ \lesssim 100\,$GeV, in which WIMPs and PBHs can both provide some but not all of the DM, so that one requires a third DM candidate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源