论文标题
一些涉及毁灭多项式和数字的身份
Some identities involving derangement polynomials and numbers
论文作者
论文摘要
计数扰动的问题是由Pierre Remonde de Motmort在1708年引发的。毁灭是没有固定点的置换,而drangement编号dn是N元素集合上的固定点无置换置换的数量。此外,毁灭多项式是毁灭性数字的自然扩展。在本文中,我们研究了毁灭性多项式和数字,它们与余弦多项式的连接和正弦 - 衍生物多项式的连接及其在某些伽马随机变量的某些变体的矩上的应用。
The problem of counting derangements was initiated by Pierre Remonde de Motmort in 1708. A derangement is a permutation that has no fixed points and the derangement number Dn is the number of fixed point free permutations on an n element set. Furthermore, the derangement polynomials are natural extensions of the derangement numbers. In this paper, we study the derangement polynomials and numbers, their connections with cosine-derangement polynomials and sine-derangement polynomials and their applications to moments of some variants of gamma random variables.