论文标题

Maire-用于解释分类器的模型不足的可解释规则提取程序

MAIRE -- A Model-Agnostic Interpretable Rule Extraction Procedure for Explaining Classifiers

论文作者

Sharma, Rajat, Reddy, Nikhil, Kamakshi, Vidhya, Krishnan, Narayanan C, Jain, Shweta

论文摘要

本文介绍了一个新颖的框架,用于提取模型不足的人类可解释的规则,以解释分类器的输出。人类可解释的规则被定义为一个轴对准的超卵形,其中包含必须解释分类决策的实例。提出的过程找到了最大的(高\ textit {coverage})轴平整的超卵形,因此,超蛋白中的大量实例具有与所解释的实例相同的类标签(高\ textit {precision})。定义了针对覆盖范围和精确度量的新型近似值。使用基于梯度的优化器将它们最大化。近似值的质量在理论上和实验上进行了严格的分析。还提出了启发式方法来简化生成的解释,以实现更好的解释性和贪婪的选择算法,该算法结合了本地解释,以创建涵盖实例空间的大部分模型的全局解释。该框架是模型不可知论,可以应用于任何任意分类器,以及所有类型的属性(包括连续,有序和无序离散)。该框架的广泛适用性在来自不同域(表格,文本和图像)的各种合成和现实数据集上进行了验证。

The paper introduces a novel framework for extracting model-agnostic human interpretable rules to explain a classifier's output. The human interpretable rule is defined as an axis-aligned hyper-cuboid containing the instance for which the classification decision has to be explained. The proposed procedure finds the largest (high \textit{coverage}) axis-aligned hyper-cuboid such that a high percentage of the instances in the hyper-cuboid have the same class label as the instance being explained (high \textit{precision}). Novel approximations to the coverage and precision measures in terms of the parameters of the hyper-cuboid are defined. They are maximized using gradient-based optimizers. The quality of the approximations is rigorously analyzed theoretically and experimentally. Heuristics for simplifying the generated explanations for achieving better interpretability and a greedy selection algorithm that combines the local explanations for creating global explanations for the model covering a large part of the instance space are also proposed. The framework is model agnostic, can be applied to any arbitrary classifier, and all types of attributes (including continuous, ordered, and unordered discrete). The wide-scale applicability of the framework is validated on a variety of synthetic and real-world datasets from different domains (tabular, text, and image).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源