论文标题

从随机行走理论的角度来看

Lévy walk dynamics in mixed potentials from the perspective of random walk theory

论文作者

Zhou, Tian, Xu, Pengbo, Deng, Weihua

论文摘要

莱维步行过程是描述超延伸的最有效模型之一,它是一些重要的运动模式的基础,并且在微动力学和宏动力学中已被广泛观察到。从随机步行理论的角度来看,在这里,我们研究了在恒力场的影响下莱维步行的动力学,并结合了谐波电位。利用HERMITE多项式近似来应对时空耦合分析挑战,检测到一些引人注目的特征,包括非高斯固定分布,更快的扩散速度和仍然强烈的异常扩散等等。

Lévy walk process is one of the most effective models to describe superdiffusion, which underlies some important movement patterns and has been widely observed in the micro and macro dynamics. From the perspective of random walk theory, here we investigate the dynamics of Lévy walks under the influences of the constant force field and the one combined with harmonic potential. Utilizing Hermite polynomial approximation to deal with the spatiotemporally coupled analysis challenges, some striking features are detected, including non Gaussian stationary distribution, faster diffusion, and still strongly anomalous diffusion, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源